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An averaging method for solving a broad class of optimal control problems for systems 
reducible to the standard form of systems with a rapidly rotating phase n] is proposed. 

The variant of the averaging method used here was proposed by N, N. Bogoliubov and 
D, N, Zubarev as an extension of the Krylov-Bogoliubov method. A general approximate 

calculation scheme is described and several variational problems are solved as examples. 
The proposed approach turns out to be an effective tool for the approximate synthesis of 

optimal systems. 

I, Prolirnf~~~y riots.. Let a controlled process be described by a system of n 

differential equations 
dxldt = f (x, u) fade) 

Here t is the time, 5 = (a+, . . . . x~) is an n -dimensional vector of the phase coor- 
dinates, u is the control (a scalar function), and f = (fi, . . . . f,) is a given n-dimen- 

sional vector function. 

The instant of termination T of the process is fixed. Without limiting generality we 
can assume that the functional to be minimized is 2, (T). The system is subject to the 

initial conditions 
z (4)) = 50, (1.2) 

Here and below the zero subscript denotes the initial value of the function. The condi- 
tions at the end of motion are defined by k relations 

rp (z. (I‘)) = 0 (4.3) 

Here cp = (qr, ..-, (ok) is a given k-dimensional vector function (I< k <n)- 
The problem of determining the optimal control can be formulated as follows: we 

are to find the control u (t) and the corresponding optimal trajectory 2 (t) which satisfy 
Eq, (1.1). conditions (1.2). (1.3). and the restrictions imposed on the control u (t) E V 
for to < t < T, and then minimize the functional X~ (T). Here V is a closed set. 

Let us apply the maximum principle r2] to this problem. We introduce the n-dimen- 
sional vector of associated variables (moments) p = (pl, . . . . 11~) and write the Hamil- 
tonian H, system (1.1). and the eauations for the associated variables as 

According to the maximum principle the control u*can be determined from the 
maximum condition for the function li with respect to u, i. e. 

H(z(t), p(t), u*)= maxH(z(t), p(f), u), 11 E v (1.6) 
where 

Pn CT) <o (1.7) 
Conditions (1.2). (1.3) together with the n - k transversality conditions constitute 

the complete set of boundary conditions for system (1.5). 

We assume that the optimal solution u* (zt P) is such that the corresponding solution 
of the system (1.5) “pierces” the surface of discontinuities of the function u* (z, ,p). 
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Let us denote the value of the Hamiltonian for the control chosen from the maximum 
condition u (2, p) = H (3, p, I.&). This enables us to express system (1.5) in canon- 
ical form, using u as our generating function, 

d3: au dp au 
dt=ap* -- 

dtz ax WV 
In fact, assuming that the function H is continuously differentiable with respect to u 

and that the function z+, has piecewise-continuous partial derivatives with respect to all 

its arguments, we can write out the following detailed expressions for the right sides of 

Eqs. (1.8); aU isi I aH au au 
ap=-&-'-zTap' F=g+z$ (1.9) 

Here we assume that u = u* was set into the expression for the function H’ once the 
derivatives with respect to 5, p, u had been computed. In those cases where the maxi- 
mum of H with respect to u is attained inside the set of permissible controls v we have 

dH I au = 0 ; if the maximum is attained on the boundary of v, then au, / $3 = 

= du, / ap = 0, since the boundary of the set V does not depend on x, p. This im- 
plies that along the trajectories associated with the control determined from (1.7) we 
have the equation aH au au au 

T-'-F az'as 
so that we can use system (1.8) instead of (1.5). Further on this fact will enable us to 

simplify the approximate calculations considerably. 

2. Asymptotic fntagr~tion, Let us assume that system (1.1) has been reduced 
to the standard form of systems with rapidly rotating phases @I, 

d;z/C.% = ef (5, Y, U), dy/dt = Co t eF (2, y, U) (2.l) 

Here e is a small parameter (a < i), Y = (Yl, . . . . Y,) is the +dimensional phase 
vector; 0 = (wl, . . . . CO,) is a set of s frequencies which we assume to be constant ; 
F = (P,, .*., F,) is a given s-dimensional vector function. The meaning of the func- 

tions x, u, f, (p remains unchanged, but f, cp now depend on x, y, u. 
The n-dimensional vector x in system (2.1) varies slowly, since its derivative is pro- 

portional to the small parameter a ; the vector y varies rapidly, since all of the frequen- 
cies oi N 1. 

Let us write out the initial and boundary conditions for (2.1), 

x 00) = X0? Y (to) = Yet cp (x, Y, n = 0 (2.2) 
Let us associate the vectors x, y with the momentum vectors p, h. The Hamiltonian 

is of the form 
H (x9 Yf P* A, 4 = v, PI -I- (A, 0 + eq (2.31 

our problem consists in determining the optimal control u (t) and the corresponding 

trajectory z (t), Y (t) hi h w c minimize the functional a& (T) and satisfy Eqs. (2. I), 
conditions (2.Q and the restrictions imposed on the control. 

Having determined the control ut from the maximum condition for the function H, 

we construct the function u 
6~ Y, P, W = H (2, Y, p, h, u*) (2.4) 

System %&I) and the adjoint system can be written as 
dX au dg ai? dp au dk RI 

--f dt=ap* dt=ah* dt= as 
-- 

dr= ay f2.5) 

The function u is constant along solutions (2.5) by virtue of the autonomy of system 

(2.1). 
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The resulting system (2.5) once again has the standard form of systems with rapidly 
rotating phases; it is characterized by slow variation of .z, p, h and rapid variation of 
the vector y. 

We can solve the boundary value problem for system (2.5) approximately with the 

aid of the averaging method. First let us consider the nonresonance case where the fre- 

quencies oi are noncommensurate. The first-approximation system for (2.5) can be 
obtained by independent averaging of the right sides of the system over the components 
of the vector y. From the form of system (2.5) we infer that we can begin by averaging 
the function U, T1 T* 

U,=lim I T TI.. .T8 * ” s s 
IJdy, dy, . . . dy, (2.6) 

0 0 

T1-+ca,...,T,-+oo 

Then, substituting u,, into (2. 5), we obtain 

Boundary conditions (2.2) remain unchanged. If the function u is periodic with the 

periods Tl, . . . . T, in the components y,, . . . . y, of the phase vector, then formula 

assumes the simpler form T* T, 

U,= /, 
s s 

..’ Udy,...dy, (2.8) 
I 

0 0 

In computing integrals (2.6), (2. 8) we assume that the slowly varying parameters 5, 

p, A remain constant. 
If all the conditions of applicability of asymptotic integration theorems [l, 31 are 

fulfilled for system (2. 5), then the solution of the boundary value problem for system 
(2.7) approxim’ates the exact solution of the boundary value problem for system (2.5) 
to within NE in the interval T - .s-l. More precisely, the solution XC’) (t)- obtained 

from (2.5) and the solution x (9 (t) obtained from (2.7), for example, satisfy the rela- 

tion max 1 x(l) (t) - d2) (t) 1 = 0 (E) P <t <T) 

Thus, having solved (X.7). we obtain the optimal trajectory and momenta in the first 
approximation ; substituting the solutions into the function u*, we obtain the control. 
Along the trajectory associated with this control,the value of the functional differs from 

the exact value by - e. 

Averaged system (2.7) is much simpler than initial system (2.5), since its right side 
does not contain the phase vector y. In some cases it is possible to integrate system 
(2.7) completely, to express the control as a function of the phase coordinates x, y , 
and thus to solve the synthesis problem in the first approximation. In more complicated 

problems it is necessary to solve (2.7) numerically, but here too it is easier to integrate 
(2.7) than it is to integrate (2. 5) because of the larger integration interval possible in 
the case of the former. 

System (2.7) has the first integrals t 

u, = const, h = ho, Y=Yo+ 
s 

3 dt (2.9) 
0 

Let us write out the formulas for calculating the first approximation in the simplest 
case where n = s = 1. From the maximum condition 

H = epf + h (w + EF) (2.10) 
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we obtain a* and then 

From system (2.7) and first integrals (2.9) we obtain 
f 

dx 
- = ef*, 
dt 

h = ho, ~=~~-~ot+e P*&, U,=const (2.12) 
s 0 

Having determined the function p from the first integral u,. we reduce solution of 
the imtial problem to the quadrature 

t=$ 
x i 

s -7?% 
(2.12) 

If we are solving a problem with a free ri;ht end (i , e. if conditions (1.3) do not apply) 
then h = 0, u* = e p (Of* 0) = 8P (TV* (T) 

Let us suppose that the function f* (t) does not change sign for to < t < T ; then, 
by (1.7). p (2) < 0, The control obtained by means of the maximum principle then 
coincides with the control obtained from the minfmum condition for the derivative 
&/dt. The resuhlng control tt* can then be found immediately in the form of functions 
of the phase coordinates t, y, i.e, in the form of a synthesis. This procedure for finding 

the controf is used extensively in celestial mechanics (see the survey and bibliography 

in 141) and is called “local optimaMy”. The above results show that locally optimal 

trajectories are close to the optimal ones in the simplest cases such as those considered 

in Sects. 3 and 4. Generally the control is more complicated even in the first approxi- 
mation. The control in the problem of Sect. 5, for example, cannot be found from the 

local optimal&y condition. 
We say that a system is subject to resonance effects if at least two of the frequencies 

@ir aj are commensurate, i.e. if there exist relatively prime integers m, l such that 

@i-TUjE U(E) (2.13) 

The computation scheme is somewhat different in this case, For simplicity we assume 
that only the two frequencies of (Z.13) are commensurate. In place of gi we introduce 
the new variable xr,++ (the phase shift) by way of the relation 

%n,l=Yi--j- rn Yj (2. id) 

Next, we reduce system (2.1) to the standard form 
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d%+ 1 

dt 
= Oi+l + EFi<l 

d y 
-X = co, $ eF, dt 

By condition (2.13). the quantities X, x,+1 in these expressions vary slowly, while 
the s - 1 phases y,,.y,, . . . . gGlr ywl ,..., y, vary rapidly. Next, we apply the 
maximum principle to (2.15) and average independently over the s - 1 components 

of the phase vector, assuming that the slowly varying parameters are constant. 

For some m and I it may turn out that solution (2.15) does not differ from the solution 
of system (21.7) in a no~eson~~ case. We then say that there are no resonance effects 

for these m and I (even though resonance conditions (2.13) are fulfifled). 

The problem is more complicated if the frequencies depend on the slowly varying 

parameters, i.e. if 0 -= (r) (x). The derivatives of some of the momenta in this case 

are approximately equal to unity. This gives rise to additional resonance states ; more- 
over. resonance conditions (2.13) can vary in the course of motion. Averaging entails 
the same difficulties as does passage through resonance zones in problems on nonlinear 

oscillations [S, 61. 
The above formulas enable us to solve the problem in the first approximation. Higher- 

order approximations can be obtained by the standard asymptotic integration procedure 

PI. 
Let us consider three very simple problems to illustrate our method. 

3. The problem of optimal parametric excitation. Let some oscil- 
latory system be described by the equation 

$2 / ata + (1 - EU)Z = 0 (3.1) 

Here u is a control subject to the condition 0 Q u Q 1. Of all the possible control 

laws u (t) in the interval 7s < ‘c < T we must find one for which the energy integral 

h = 1/2 (2” + 2’2) 
assumes its smallest (largest} value at the end of the process. 

By the standard substitution of variables 

z = 5 cos Y, dzidt = - 2 sin Y 

we reduce (3.1) and (3.2) to the standard form 

2’ = - aux cos Y sin Y, Y’ = 1 - EU 

h = 0.5 x2 

We infer from (3.5) that the initial problem is equivalent to 
mization) of the amplitude z. From the maximum condition 

H = h - E u cos2 y [h + XJI tg y] 
we obtain 

i.1 = 0 (- li. - xp tg Y) 

(3.2) 

(3.3) 

co9 y (3.4) 
(3.5) 

the minimization (maxi- 

(3.6) 

(3.7) 

Here we have introduced the Heaviside function: 0 (z) = 0 for z < 0 and 8 (z) =Z 

for z> 0. 
The boundary conditions are of the form 

5 (ta) = x0, Y fro) = YO7 P (T) = -1, k(T) = 0 (3.8) 
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Substituting (3.7) into (3.6), we obtain 

u =h- E Ih C0S2 y + .zp CO9 y sin yl 0 I- h - Xp tg y] 

After averaging we have 

U*=h-+/I-t ++harctg$] 

Making use of formulas (2.11) with allowance for (3.8). we obtain 

h=0, p= z(T) --,x=zOexp 
- e (z - zo) 

5 CT’) 2n ,Y=Yo+ji-~)(7--0~(3-9~ 

Substituting (3.9) into (3.7). we obtain the optimal (first-approximation) control law 

U = 0 frf- tg $1 = 0 (“F %I) 

Here the upper signs correspond to the optimal decrease in the oscillation amplitude 

and the lower signs to the optimal increase, 

4, Rotrtlonrl motion, The proposed scheme can be used to compute the op- 

timal controls for essentially nonlinear systems. For example, let us consider the prob- 
lem of the optimal decrease of energy of a rotating pendulum. The equation of motion 

can be written as dayldta + w sin y = 0 (4.1) 
We must choose the control w {t) from the interval w, < w < w1 in such a way 

that the angular velocity assumes its smallest value at the end of motion. We assume 

that the pendulum rotates rapidly throughout the process. Following [‘7], we introduce 
the new variables 5, the time z, and the initial angular velocity Q by means of the 

relations ~~i~~ = Q + 5, z = &--rt, Q = e-1 

where e < 1 is a small parameter. We obtain a system equivalent to Eq. (4. l), 

dxk& = - EW sin y, dyldr = 1 + 8x 

The boundary conditions for the optimal problem are as follows: 

z (%I = 0, Y (%I = 62, p(T) = - 1, h (T) = 0 

Let us write out the function H, the optimal law of variation of w, and the averaged 

function U, , H= a+ exh- epwsin y 
w = wl El (-p sin y) + w, 8 (p sin y ) 

u*=~(~~~)+~(~~-~~) 

The final solution of the problem is of the form 

5= (t@;fuI) (t-to), y= c;z + cn (f -to)+ ~(“s-tOr)$- O@-1) 

6. Strbflirrtlon of motion. The problem of choosing the optimal control 

law for the stabilization of an oscillatory system acted on by perturbing forces arises in 
various problems of the theory of nonlinear oscillations. The dynamics of such processes 

for the simplest stabilization laws has been investigated by several authors. The aver- 
aging method appears to be an exceptionally effective means of solving problems of 

synthesis of stabilizing systems. For example, let us solve the problem of stabilization 
of the relative motion of a satellite in a near-circular orbit. 

We assume that the satellite is equipped with two low-thrust engines which generate 
a certain controlling moment L). Let the principal central axis of inertia of the satellite 
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be perpendicular to the orbital plane at all times, * the moment af inertia about this axis 

is equal to B. We denote the moment of inertia about the two other axes by A and C 

fA > 0 
We describe the relative motion by means of the angle rp - the angle between the 

direction of the orbital perigee and the principal central axis of inertia of the satellite 
associated with the moment of inertia 6. To within quantities on the order of the ratio 
of the satellite d~me~ions to the dimensions of the orbit the equation of relative motion 

Here e is the eccentricity of the orbit, 8 is the true anomalyy, P is the focal parame- 
ter of the orbit, DX is a certain characteristic parameter of the consoling moment * 
v, 5E - t% - y is the angle between the radius vector of the center of mass and the 

axis of inertia of the satellite associated with the moment of inertia C, and cx: is the 

angle between the velocity vector and the direction normal to the radius vector of the 

center of mass. We have the formula 

The angles introduced above are related by the expression 

Y = ‘/en + 6 - CL - cp (5.3) 
Let us assume that e and $4, are small quantities of the same order of magnitude, Then, 

neglecting the evolution of the center-of-mass orbit of the satellite, we obtain 

~~e~~~~~-Q~e~)~ %=1-k2scas@$ U(f9) P.4) 

Linearizing Eq, (5. I) for small Y with allowance for f5.3), ($4). we obtain 

$+1122r= XU -er(1+Ea)sin6+3yEacos61=-9 (5.5) 

~o~~ow~~g fsf. we f~~~~~a~~ the pM4em of opt&& s~bi~~a~on with respect to the 
motion of the satellite as follows: we are required to synthesize the control u(y, f, +r) 

in such a way that the functional “T 

S= *~~~~t~2~2~~~ (5.6) 
ti 

assumes Its minimum value in a fixed time of motion T . Here c is some cxwtant, 
The first term in the integrand is the integral penalty for the large value of the control- 
ling moment ; the second term is the integral penalty for the large deviation of the 

angle ye 
Let us introduce the new variables x1$ zs, y by means of the expressions 

dxz 
~~=qcosy, g= -~~I.siny, X-x(u2+c2~2) (5.7) 

TIE eqrrations of re&d~e motion and of the cerrter-of-mass motion w&ten in the 

standard form are 
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Here xl, zs vary slowly ; the rapidly varying parameters are y, 6. We associate the 

f~c~ons xl, zs, y, 6 with the momenta pl,ps, h, &. 
The boundary conditions for the variational problem are 

$1 (0) = 30, Y 60 = Yo* Pz (T) = --1 

q(O) = p1 (T) = A, (T) = h-,(T) = 0 w-4 

The minimising functional is J = q (2’). Let us write out the function H, the optimal 
control, and the function fi for the nonresonance case, 

H = p sing-i- hI [E + w] +sp,(u2+ ~4~~cos~y)+h,(i + 2ecos6) 

u=&[~rsiny+*] (5.10) 

+ 3x1E2 cos y cos 6) + xp,czx12 cos2 y + h, (14 2e cos 6) + W 

Averaging and making use of (2.9). (5.9). we obtain 

Xl = ha= 0, pa= -1, y= y,3_Ez, i)=6,fo 

Integrating the system 

we obtain 
z==xIo[chzk-+ashzk], pJ.=plo chzk+y] 

II 
(5.13) 

J= ‘qsh2kT 120 + (1+ W)cthkT] 

Conditions (5.9) yield 
PlO = - 2cxlo th kT f5A4) 

Substituting (5.14) into (5.10),(5.13), we obtain 

x I- “10 
ehk(T-r) 

chkT ’ J= cxXo2thkT, p = -Zcxthk(T-7) 

From this solution we conclude that the amplitude of the satellite oscillations about 
the velocity vector decreases monotonically and that the controlling moment Qscillates 
at the frequency of the relative motion and with a slowly decreasing amplimde equal 
to zero for z = i”. Expressing u in terms of the phase coordinates, we obtain the solu- 
tion of the optimal correction synthesis problem, 

u= -c $thk(T-q) (5.15) 

System (5.8) has resonance effects for E = I, E = 0.6, These can be investigated 
by the scheme of Sect. 2. 

The controls obtained in the above examples can differ from the exact optimal con- 
trols by N 1 , However, the approximate values of the functionals and phase coordinates 
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approximate the exact ones to within - E, 36 in the interval of motion I’ - n-l, x-i 
respectively. In this sense the above controls are optimal in the first approximation. 
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2. 
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STABILITY OF THE PERIODIC SOLUTIONS OF QUASILINEAR 

AUTONOMOUS SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 

PMM Vol. 34, iW, 1970, pp.105-114 
A, P. PROSKURIAKOV 

(Moscow 
(Received April 1 4, 1969) 

Sufficient conditions for the asymptotic stability of quasilinear autonomous systems con- 

sisting of second-order equations are derived. The generating systems can have simple 

and multiple,commensurate and partly noncommensurate, and zero frequencies. The 
investigation is carried out with the aid of equations in variations for sufficiently small 
values of the parameter p. 

1. Let us consider the following quasilinear autonomous system with IZ degrees of 
freedom: n 

2 (aig’*k -f- C&k) = FFi (Xl, . . ., Xnl 2’1, . . ., X‘,, p) 

k-1 

aik = akil cik = cki (i S 1, . . ., fi) 


